CLASS XI(STREAM SA)

Section 1-PartA-Mathematics

1. A quadrilateral has distinct integer side lengths. If the second-largest side has length 10 , then the maximum possible length of the largest side is
[2017]
(A) 25
(B) 26
(C) 27
(D) 28

Sol. [B]
Let $\mathrm{b}=10, \mathrm{c}=9, \mathrm{~d}=8$
Sum of three sides $>\mathrm{IV}^{\text {th }}$ side
$b+c+d>a$
a < 27
2. The largest power of 2 that divides $\frac{200!}{100!}$ is
[2017]
(A) 98
(B) 99
(C) 100
(D) 101

Sol. [C]
Exponent of 2 in $200!=197$
Exponent of 2 in $100!=97$
 expression $\left(a_{1}-a_{2}\right)^{2}+\left(a_{2}-a_{3}\right)^{2}+\left(a_{3}-a_{4}\right)^{2}+\left(a_{4}-a_{1}\right)^{2}$ lies in the interval
[2017]
(A) $(0,1.5)$
(B) $(1.5,2.5)$
(C) $(2.5,3)$
(D) $(3,3.5)$

Sol. [Bonus]

$\because a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=1$
Smallest possible value of $\left(a_{1}-a_{2}\right)^{2}+\left(a_{2}-a\right)_{b}^{2}+(a-a)_{4}^{2}+(a-a)_{4}^{2}=0$
if $a_{1}=a_{2}=a_{3}=a_{4}= \pm \frac{1}{2}$
(It should be bonus)
4. Let S be the set of all ordered pairs (x, y) of positive integers satisfying the condition $x^{2}-y^{2}=12345678$. Then
[2017]
(A) S is an infinite set
(B) S is the empty set
(C) S hasexactly one element
(D) S is a finite set and has at least two elements.

Sol. [B]
$x^{2}-y^{2}=12345678\left(x, y \in I^{+}\right)$
R.H.S. is even, so x, y should be odd integer but difference of square of two odd integers is multiple of 8 but R.H.S. is not multiple of 8
5. Let $A_{1} A_{2} A_{3}$... A_{9} be a nine-sided regular polygon with side length 2 units. The difference between the lengths of the diagonals $A_{1} A_{5}$ and $A_{2} A_{4}$ equals
[2017]
(A) $2+\sqrt{12}$
(B) $\sqrt{12} 2$
(C) 6
(D) 2

Sol. [D]

$\angle \mathrm{A}_{1} \mathrm{OA}_{2}=\frac{2 \pi}{9}=40^{\circ}$
$\cos \frac{2 \pi}{9}=\frac{x^{2}+x^{2}-4}{2 x^{2}}$
$\left.x^{2} \cos 40^{\circ}\right)=x^{2}-2$
$x^{2}\left(1-\cos 40^{\circ}\right)=2$
$x=\frac{1}{\sin 20^{\circ}}$
Now $\cos \frac{8 \pi}{9}=\frac{x^{2}+x^{2}-\left(A_{1} A_{5}\right)^{2}}{2 x^{2}}($ in $\triangle A \rho A)$
$(\mathrm{AA})^{2}=2 x^{2}\left(1-\cos \frac{8 \pi}{9}\right)$
$=2 x^{2}\left(1-\cos 160^{\circ}\right)$
$=4 x^{2} \sin ^{2} 80^{\circ}$
$\mathrm{A}_{\mathrm{A}} \mathrm{A}_{5}=2 \mathrm{x} \sin 80^{\circ}$
Similarly in $\triangle A$ OA
$\mathrm{A}_{2} \mathrm{~A}_{4}=2 \mathrm{x} \sin 40^{\circ}$ \qquad
(ii) - (iii)
$\mathrm{A}_{1} \mathrm{~A}_{5}-\mathrm{A}_{2} \mathrm{~A}_{4}=2 x\left(\sin 80^{\circ}-\sin 40^{\circ}\right)$

$$
{ }^{4}=2(\text { using (i)) }
$$

6. Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{\mathrm{n}}$ be n nonzero real numbers, of which p are positive and remaining are negative. The number of ordered pairs $(j, k), j<k$, for which aa is positive, is 55 . Similarly, the number of ordered pairs (j, k), $j<k$, for
which a a is negative is 50 . Then the which aa is negative is 50 . Then the'value of $p^{2}+(n-p)^{2}$ is
(A) $629{ }^{j \mathrm{k}}$
(B) 325
(C) 125
(D) 221

Sol. [C]

${ }^{\mathrm{p}} \mathrm{C}_{2}+{ }^{n-\mathrm{p}} \mathrm{C}_{\overline{2}}=55$
$\frac{\mathrm{p}(\mathrm{p}-1)}{2}+\frac{(\mathrm{n}-\mathrm{p})(\mathrm{n}-\mathrm{p}-1)}{2}=55$
Also, $p(n-p)=50$

Put in (i)

$$
\begin{aligned}
& p(p-1)+\frac{50}{p}\left(\frac{50}{p}-1\right)=110 \\
& p^{2}-p+\left(\frac{50}{p}\right)^{2}-\frac{50}{p}=110 \\
& p^{2}-p+\left(\frac{50}{p}\right)^{2}-\frac{50}{p}=110 \\
& \begin{array}{r}
\left(p+\frac{50}{p}\right)^{2}-100-\left(p+\frac{50}{p}\right)=110 \\
\begin{array}{r}
t^{2}-t-210=0 \\
t
\end{array}=15 \text { or }-14(\text { not true })
\end{array} \\
& \begin{array}{r}
\therefore p+\frac{50}{p}=15 \\
\therefore \text { To find } p^{2}+(n-p)^{2}=p^{2}+\left(\frac{50}{p}\right)^{2}
\end{array} \\
& =\left(p+\frac{50}{p}\right)^{2}-100 \\
& =125(u s i n g(\text { (iii) })
\end{aligned}
$$

7. If a, b, c, d are four distinct numbers chosen from the set $\{1,2,3 \ldots, 9\}$, then the minimum value of $\frac{a}{b}+\frac{c}{d}$ is
(A) $\frac{3}{8}$
(B) $\frac{1}{3}$
(C) $\frac{13}{36}$
(D) $\frac{25}{72}$

Sol. [D]

$$
\frac{2}{9}+\frac{1}{8}=\frac{25}{72}
$$

8. If $72^{x} .48^{y}=6^{x y}$, where x and y are nonzero rational numbers, then $x+y$ equals
(A) 3
(B) $\frac{10}{3}$
(C) -3
(D) $-\frac{10}{3}$

Sol. [D]
$72^{x} \cdot 48^{y}=6^{x y}$
$3^{2 x+y} \cdot 2^{3 x+4 y}=2^{x y} \cdot 3^{x y}$
compare

$$
\begin{align*}
2 x+y & =x y \tag{i}\\
\& 3 x+4 y & =x y \tag{ii}\\
x & =-3 y \\
-5 y & =-3 y^{2}
\end{align*}
$$

From (i) \& (ii)
put in (i)
$\Rightarrow y=\frac{5}{3}$
so $\mathrm{x}+\mathrm{y}=-2 \mathrm{y}=-\frac{10}{3}$
9. Let $A B$ be a line segment of length 2. Construct a semicircle S with $A B$ as diameter. Let C be the midpoint of the $\operatorname{arc} A B$. Construct another semicircle T external to the triangle $A B C$ with chord $A C$ as diameter. The area of the region inside the semicircle T but outside S is
[2017]
(A) $\frac{\pi}{2}$
(B) $\frac{1}{2}$
(C) $(\stackrel{\pi}{\sqrt{2}}$
(D) $(\sqrt[1]{1} \sqrt{2}$

Sol. [B]

$\angle A C B=90^{\circ}$
$A C=\sqrt{2}$
Required area = Area of semicircle having AC as diameter-Area under arc OAC but outside triangle AOC
$=2^{1}\left(\left(\frac{\sqrt{2})^{2}}{2}\right)\right)^{\left.-\binom{\pi}{4}^{-}\right)}$
$=\frac{\pi}{4}-\frac{\pi}{4}+\frac{1}{2}=\frac{1}{2}$
10. Let $r(x)$ be the remainder when the polynomial $x^{135}+x^{125}-x^{115}+x^{5}+1$ is divided by $x^{3}-x$. Then
(A) $r(x)$ is thezero polynomial
(B) $r(x)$ is a nonzero constant
(C) degree of $r(x)$ is one
(D) degree of $r(x)$ is two

Sol. [C]

$x^{135}+x^{125}-x^{115}+x^{5}+1=k\left(x^{3}-x\right)+A x^{2}+B x+C$
put $x=0 \quad$ C=1
Put $x=1$
$3=A+B+1$
$A+B=2$
put $x=-1$
$-1=A-B+1$
$A-B=-2$
(i) + (ii)
$\mathrm{A}=0$
$B=2$
11. It is given that the number 43361 can be written as a product of two distinct prime numbers p_{1}, p_{2}. Further, assume that there are 42900 numbers which are less than 43361 and are co-prime to it. Then, $p_{1}+p_{2}$ is
[2017]
(A) 462
(B) 464
(C) 400
(D) 402

Sol. [A]
$43361=131 \times 331$
12. Let $A B C$ be a triangle with $\angle C=90^{\circ}$. Draw $C D$ perpendicular to $A B$. Choose points M and N on sides $A C$ and $B C$ respectively such that $D M$ is parallel to $B C$ and $D N$ is parallel to $A C$. If $D M=5, D N=4$, then $A C$ and $B C$ are respectively equal to
(A) $\frac{41}{4}, \frac{41}{5}$
(B) $\frac{39}{4}, \frac{39}{5}$
(C) $\frac{38}{4}, \frac{38}{5}$
(D) $\frac{37}{4}, \frac{37}{5}$

Sol. [A]

$C D=\sqrt{41}$
$\Delta \mathrm{AMD} \sim \Delta \mathrm{DNB}$
$\frac{y}{5}=\frac{4}{x}=\frac{z}{t}$

$$
\begin{equation*}
x y=20 \tag{i}
\end{equation*}
$$

In $\triangle B C D$
$(y+5)^{2}=41+z^{2}$
In \triangle ADC
$(x+4)^{2}=41+t^{2}$
$\Rightarrow \begin{aligned} & (y+5)^{2}-41 \\ & (x+4)^{2}-41\end{aligned}=\binom{\mathrm{t}}{\mathrm{t}^{2}}$
$\Rightarrow \frac{\binom{20}{x+5}^{2}-41}{(x+4)^{2}-41}=\left.\right|_{\left(\frac{4}{x}\right)} ^{)^{2}}$ (use (i))
$\Rightarrow \frac{(20+5 x)^{2}-41 x^{2}}{(x+4)^{2}-41}=16$
$\Rightarrow \frac{400+25 x^{2}+200 x-41 x^{2}}{x^{2}+16+8 x-41}=16$
$\Rightarrow-16 x^{2}+200 x+400=16 x^{2}+128 x-400$
$\Rightarrow 32 x^{2}-72 x-800=0$
$\Rightarrow 4 \mathrm{x}^{2}-9 \mathrm{x}-100=0$
$x=\frac{25}{4}$
so $y=\frac{20 \times 4}{25}=\frac{16}{5}$
13. Let A, G and H be the arithmetic mean, geometric mean and harmonic mean, respetively of two distinct positive real numbers. If α is the smallest of the two roots of the equation
$A(G-H) x^{2}+G(H-A) x+H(A-G)=0$, then
[2017]
(A) $-2<\alpha<-1$
(B) $0<\alpha<1$
(C) $-1<\alpha<0$
(D) $1<\alpha<2$

Sol. [B]
$x=1$ is a root as sum of coefficient $=0$
Now $\alpha \beta=\frac{\mathrm{H}(\mathrm{A}-\mathrm{G})}{\mathrm{A}(\mathrm{G}+\mathrm{H})}$
Put $\beta=1$
$\alpha=\frac{H A-H G}{A G-A H}=\frac{G^{2}-H G}{A G-A H}$

$$
\left.=\frac{G(G-H)}{A(G-H)}=\frac{G}{A}<1 \quad \text { [as A.M. }>\text { G.M. }\right]
$$

14. In the figure, $A B C D$ is a unit square. A circle is drawn with centre O on the extended line $C D$ and passing through A . If the diagonal AC is tangent to the circle, then the area of the shaded region is
[2017]

(A) $\frac{9-\pi}{6}$
(B) $\frac{8-\pi}{6}$
(C) $\frac{7-\pi}{4}$
(D) $\frac{6-\pi}{4}$

Sol. [D]

$\therefore \angle \mathrm{OAC}=90^{\circ}$ as AC is tangent and OA is radius
as $\angle \mathrm{CAD}=45^{\circ}$
So $\angle O A D=45^{\circ}=\angle A O D$
$\therefore \mathrm{OA}=\sqrt{2}$
Area of shaded region
$=1-$ (area of sector OAX - area of \triangle OAD $)$

$=1-\left\lceil\left.\frac{\pi}{4}-\frac{1}{2} \right\rvert\,\right\rfloor=\frac{3}{2}-\frac{\pi}{4}$
15. The sum of all non-integer roots of the equation $x^{5}-6 x^{4}+11 x^{3}-5 x^{2}-3 x+2=0$ is
[2017]
(A) 6
(B) -11
(C) -5
(D) 3

Sol. [D]
$(x-1)(x-2)\left(x^{3}-3 x+1\right)=0$
\therefore Required sum of roots $=3$

Section 2 - Part-Physics

16. Consider the following statements (X and Y stand for two different elements)
[2017]
(I) ${ }_{32} X^{65}$ and ${ }_{33} Y^{65}$ are isotopes.
(II) ${ }_{42} X^{86}$ and ${ }_{42} Y^{85}$ are isotopes.
(III) ${ }_{85} \mathrm{X}^{174}$ and ${ }_{88} \mathrm{Y}^{177}$ have the same number of neutrons.
(IV) ${ }_{92} \mathrm{X}^{235}$ and ${ }_{94} \mathrm{Y}^{235}$ are isobars.

The correct statements are :
(A) II and IV only.
(B) I, II and IV only.
(C) II, III and IV only.
(D) I, II, III and IV only.

Sol. [C]
Isotopes : molecules haveing same number of proton
Isobars : Molecules haveing same number of nucleons
17. A student performs an experiment to determine the acceleration due to gravity g . The student throws a steel ball up with initial velocity u and measures the height h travelled by it at different times t. The graph the student should plot on a graph paper to readily obtain the value of g is
[2017]
(A) h versus t .
(B) hversus ${ }^{2}$
(C) h versus \sqrt{t}.
(D) ${ }_{t}$ tersust.

Sol. [D]
$\mathrm{h}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$
$h=u t-\frac{1}{2} \mathrm{gt}^{2}$
$\frac{h}{\mathrm{t}}=\mathrm{u}-\frac{1}{2} \mathrm{gt}$
$y=m x+c$
stope will define the value gravity.
18. A person goes from point P to point Q covergin $1 / 3$ of the distance with speed $10 \mathrm{~km} / \mathrm{hr}$, the next $1 / 3$ of the distance at $20 \mathrm{~km} / \mathrm{hr}$ and the last $1 / 3$ of the distance at $60 \mathrm{~km} / \mathrm{hr}$. The average speed of the person is
[2017]
(A) $30 \mathrm{~km} / \mathrm{hr}$
(B) $24 \mathrm{~km} / \mathrm{hr}$
(C) $18 \mathrm{~km} / \mathrm{hr}$
(D) $12 \mathrm{~km} / \mathrm{hr}$

Sol. [C]
$\mathrm{V}_{\text {avg }}=\frac{\text { Total Distance }}{\text { total time }}=\frac{\mathrm{S}}{\frac{\mathrm{S} / 3}{10}+\frac{\mathrm{S} / 3}{20}+\frac{\mathrm{S} / 3}{60}}$
$\mathrm{V}_{\mathrm{avg}}=18 \mathrm{~km} / \mathrm{hr}$
19. A person looks at the image of two parallel finite length lines $P Q$ and $R S$ in a convex mirror (see figure).

Which of the following represents schematically the image correctly ? (Note : Letters P, Q, R and S are used only to denote the endpoints of the lines.)
[2017]

D. R

(A) A
(B) B
(C) C
(D) D

Sol. [B]
Object placed in front of mirror. For all position of object infornt of mirror, image in virtural, erect, smaller in size. As object is moved away from pole magnification decrases.
20. In Guericke's experiment to show the effect of atmospheric pressure, two copper hemispheres were tightly fitted to each other to form a hollow sphere and the air from the sphere was pumped out to create vacuum inside. If the radius of each hemisphere is R and the atmospheric pressure is P, then the minimum force required (when the two hemispheres are pulled apart by the same force) to separate the hemispheres is
[2017]
(A) $2 \pi R^{2} P$
(B) $4 \pi R^{2} P$
(C) $\pi R^{2} P$
(D) $\pi R^{2} P / 2$

Sol. [C]

$F=\left(P_{0}-0\right) A$
$F=\pi R^{2} P$
21. Positive point charges are placed at the vertices of a star shape as shown in the figure. Direction of the electrostatic force on a negative point charge at the centre O of the star is
[2017]

(A) towards right
(B) vertically up
(C) towards left
(D) verticallydown

Sol. [A]

22. A total solar eclipse is observed from the earth. At the same an observer on the moon views the earth. She is most likely to see (E denotes the earth)
[2017]
(a)

(b)

(c)

(d)

(A) a
(B) b
(C) c
(D) d

Sol. [B]

Theoritical
23. Ice in a freezer is at $-7^{\circ} \mathrm{C} .100 \mathrm{~g}$ of this ice is mixed with 200 g of water at $15^{\circ} \mathrm{C}$. Take the freezing temperature of water to be $0^{\circ} \mathrm{C}$, the specific heat of ice equal to $2.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, specific heat of water equal to $4.2 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, and the latent heat of ice equal to $335 \mathrm{~J} / \mathrm{g}$. Assuming no loss of heat to the environment, the mass of ice in the final mixture is closest to
[2017]
(A) 88 g
(B) 67 g
(C) 54 g
(D) 45 g

Sol. [B]

Let mgm of ice melted
Mixture will be at $0^{\circ} \mathrm{C}$
Heat given $=200 \times(4.2)(15) \mathrm{J}$
Heat absorbed $=100 \times 2.2 \times(7)+m(335)$
by solving $\mathrm{m}=33 \mathrm{gm}$
So ice remain $=100-33=67 \mathrm{~g}$
24. A point source of light is placed at $2 f$ from a converging lens of focal length f. A flat mirror is placed on the other side of the lens at a distanc d such that rays reflected from the mirror are parallel after passing through the lens again. If $f=30 \mathrm{~cm}$, then d is equal to
[2017]
(A) 15 cm .
(B) 30 cm .
(C) 45 cm .
(D) 75 cm .

Sol. [C]

at $2 f$ - object then image will also be at ' $2 f$ '. Finally image is at ∞ therefore after reflection from mirror. Image must be formed at focus.
$d=\frac{f+2 f}{2}=45 \mathrm{~cm}$
25. The word "KVPY" is written on a board and viewed through different lense such that board is at a distance beyond the focal length of the lens.
[2017]

(i)
AdAX
(ii)

Ignorging magnification effects, consider the following statements
(I) Image (i) has been viewed from the planar side of a plano-convex lens and image (ii) from the convex side of a plano-convex lens.
(II) Image (i) has been viewed from the concave side of a plano-concave lens and image (ii) from the planar side of a plano-convex lens.
(iii) Image (i) has been viewed from the cocave side of a plano-concave lens and image (ii) from the planar side of a plano-convex lens.
(iv) Image (i) has been viewed from the planar side of a plano-concave lens and image (ii) from the convex side of a plano-convex lens.
Which of the above statements are correct ?
(A) All four.
(B) Only (III).
(C) Only (IV).
(D) Only (II), (III) and (IV).

Sol. [D]
(i) For plano-concave lens or concave lens if object is placed beyond focus image is erected
(ii) For convex lens If object is placed beyond focus image is inverted
26. A ball is dropped vertically from heigth h and is bouncing elastically on the floor (see figure). Which of the following plots best depicts the acceleration of the ball as a function of time.
h

(A)

(B)

(C)

(D)

Sol. [B]
Acceleration is all the time $(-\mathrm{g})$ except at the time of collision it is impulsive force in (+)ve decrease.
27. A student studying the similarities and differences between a camera and the human eye makes the following observations.
[2017]
(I) Both the eye and the camera have convex lenses.
(II) In order to focus, the eye lens expands or contracts while the camera lens moves forward or backward.
(III) The camera lens produces upside down real images while the eye lens produces only upright real image.
(IV) A screen in camera is equivalent to the retina in the eyes.
(V) A camera ajusts the amount of light entering in it by adjusting the apeture of the lens. In the eye the cornea controls the amount of light.
The correct statemetns are :
(A) Only (I), (II) (IV).
(B) Only (I), (III), (V).
(C) Only (I), (II), (IV), (V).
(D) All

Sol. [A]
Theoritical
28. A particle starts moving along a line from zero initial velocity and comes to rest after moving distance d. During its motion it had a constant acceleration f over $2 / 3$ of the distance, and covered the rest of the distance with constant retardation. The time taken to cover the distance is
(A) $\sqrt{2 d / 3 f}$
(B) $2 \sqrt{d / 3 f}$
(C) $\sqrt{3 \mathrm{~d} / \mathrm{f}}$
(D) $\sqrt{3 \mathrm{~d} / 2 \mathrm{f}}$

Sol. [C]

$\mathrm{a}_{1} l_{1}=\mathrm{a}_{2} l_{2}$
by equation of motion
Retardation $=2 f$

$$
\mathrm{t}=\mathrm{t}_{1}+\mathrm{t}_{2}
$$

$$
=\sqrt{\frac{4 d}{3 f}}+\sqrt{\frac{2 d}{2 f}}=\sqrt{\frac{3 d}{f}}
$$

(A) $v=\frac{1-m}{P}$
(B) $v=\frac{1+m}{P}$
(C) $v=\frac{m}{P}$
(D) $v=\frac{1+2 m}{P}$

Sol. [A]
Theoritical (formula)
30. A long cylindrical pipe of radius 20 cm is closed at its upper end and has an airtight piston of negligible mass as shown. When a 50 Kg mass is attached to the other end of the pistion, it moves down. If the air in the enclosure is cooled from temperature T to $\mathrm{T}-\Delta \mathrm{T}$, the piston moves back to its original position. Then $\Delta \mathrm{T} / \mathrm{T}$ is close to (Assuming air to be an ideal gas, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, atmospheric pressure is 10^{5} Pascal),
[2017]

(A) 0.01
(B) 0.02
(C) 0.04
(D) 0.09

Sol. [C]

Initially pressure $=P_{0}$
When 50 kg mass is suspended
pressure $=P_{0}-\frac{\mathrm{mg}}{\mathrm{A}}$
(temp = constant)
$P_{0} V_{i}=\left(\begin{array}{l}\left(V-\frac{m g}{A}\right) V \\)_{i}\end{array}\right.$
$\left(P-\frac{m g}{A}\right) V_{f=n R T}$
$\left.\left(\mathrm{P}-\frac{\mathrm{mg}}{\mathrm{a}}\right)_{\mathrm{A}}\right) \mathrm{V}_{\mathrm{i}=\mathrm{nR}(\mathrm{T}-\Delta \mathrm{T})}$
$\frac{V_{f}}{V_{i}}=\frac{T}{T-\Delta T}$
$\frac{T-\Delta T}{T}=\frac{V_{i}}{V_{f}}$
$1-\frac{\Delta T}{T}=\left(P_{0}-\frac{m g}{A}\right) \frac{1}{P_{0}}$
$\frac{\Delta T}{T}=\frac{m g}{A P_{0}}$
$=\frac{50 \times 10}{3.14 \times(0.2)^{2} \times 10^{5}}$
500
$=\frac{500}{12.56 \times 10^{3}}$
$=\frac{5}{125.6}=\frac{1}{25}=0.04$

Section 3-Part A-Chemistry

31. The structure of 3-methylpent-2-ene is
[2017]
(A)

(B)

(C)

(D)

Sol. [A]

32. The stability of carbanions
[2017]

I
$\mathrm{CH}_{3} \stackrel{\ominus}{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{CH}_{3}$
II
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{\Theta}$
III
$\mathrm{CH}_{3} \stackrel{\ominus}{\mathrm{C}}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{CH}_{3}$
IV
follows the order
(A) III $<$ IV $<$ I $<$ II
(B) I $<$ II $<$ IV $<$ III
(C) III $<$ II $<$ I $<$ IV
(D) IV $<$ III $<$ II $<$ I

Sol. [C]
(IV) is stabilized by Resonance \&
$\mathbf{1}^{\circ}>\mathbf{2}^{\circ}>\mathbf{3}^{\circ} \rightarrow$ stability order of carbanion
33. In the following reaction

the majorproduct is
[2017]
(A)

(B)

(C) (C)

(D)

Sol. [D]
Coupling reaction

34. In the reaction of 1-bromo-3-Chlorocyclobutane with two equivalents of sodium in ether, the major product is
[2017]
(A)

(B)

(C)

(D)

Sol. [D]
Wurtz Reaction

35. The order of basicity of

II

III

IV
in water is
[2017]
(A) IV $<$ III $<$ I $<$ II
(B) II $<$ I $<$ IV $<$ III
(C) IV $<$ I $<$ III $<$ II
(D) II $<$ III $<$ I $<$ IV

Sol. [C]
(II) is most basic because its lone pair is not participating in resonance \& attacted to sp^{3} hyb. carbon.
36. The first ionisation energy of $\mathrm{Na}, \mathrm{B}, \mathrm{N}$ and O atoms follows the order
[2017]
(A) $\mathrm{B}<\mathrm{Na}<\mathrm{O}<\mathrm{N}$
(B) $\mathrm{Na}<\mathrm{B}<\mathrm{O}<\mathrm{N}$
(C) $\mathrm{Na}<\mathrm{O}<\mathrm{B}<\mathrm{N}$
(D) $\mathrm{O}<\mathrm{Na}<\mathrm{N}<$ B

Sol. [B]
N has half filled stable configuration and Na is most electropositive element.
37. Among $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{Sb}_{2} \mathrm{O}_{3}$ and $\mathrm{Bi}_{2} \mathrm{O}_{3}$ the most acidic oxide is
[2017]
Sol. [A]
(A) $\mathrm{P}_{2} \mathrm{O}_{5}$
(B) $\mathrm{As}_{2} \mathrm{O}_{3}$
(C) $\mathrm{Sb}_{2} \mathrm{O}_{3}$
(D) $\mathrm{Bi}_{2} \mathrm{O}_{3}$

Top to down, Basic strength increases.
38. Among $\mathrm{K}, \mathrm{Mg}, \mathrm{Au}$ and Cu , the one which is extracted by heating its ore in air is
[2017]
(A) K
(B) Mg
(C) Au
(D) Cu

Sol. [D]
Theoritical question.
39. The metal ion with total number of electrons same as S^{2-} is
[2017]
(A) $\mathrm{N}^{\mathrm{a}+}$
(B) Ca^{2+}
(C) Mg^{2+}
(D) Sr^{2+}

Sol. [B]

S^{-2} has 18 electrons \& so Ca^{+2} ion are having
40. Xg of Ca [atomic mass $=40$] dissolves completely in concentrated HCl solution to produce 5.04 L of H_{2} gas at STP. The value of X is closest to
[2017]
(A) 4.5
(B) 8.1
(C) 9.0
(D) 16.2

Sol. [C]

$\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}(\mathrm{~g})$
$\frac{x}{40}$
$\Rightarrow \frac{5.04}{22.4}$
$\Rightarrow \frac{x}{40}=\frac{5.04}{22.4} \Rightarrow x=9$
41. A 20 g object is moving with velocity $100 \mathrm{~ms}^{-1}$. The de Broglie wavelength (in m) of the object is [Planck's constant $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$]
[2017]
(A) 3.313×10^{-34}
(B) 6.626×10^{-34}
(C) 3.313×10^{-31}
(D) 6.626×10^{-31}

Sol. [A]
$\lambda={ }^{\mathrm{h}} \mathrm{m} \overline{\overline{\mathrm{v}}} \quad \frac{6.626 \times 10^{-31}}{20 \times 10 \times 100}=3.313 \times 10^{-34}$
42. In a closed vessel at STP, $50 \mathrm{~L}^{2} \mathrm{CH}_{4}$ is ignited with 750 L of air (containing $20 \% \mathrm{O}_{2}$). The number of moles of O_{2} remaining in the vessel on cooling to room temperature is closest to
[2017]
(A) 5.8
(B) 2.2
(C) 4.5
(D) 6.7

Sol. [B]
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$50 \mathrm{~L} \quad 150 \mathrm{~L}$
CH_{4} is limiting reagent
Moles of O_{2} remaining $=\frac{50}{22.4}=2.2$ moles
43. $\quad \mathrm{CO}_{2}$ is passed through lime water. Initially the solution turns milky and then becomes clear upon continued boubbling of CO_{2}. The clear solution is due to the formation of
[2017]
(A) CaCO_{3}
(B) CaO
(C) $\mathrm{Ca}(\mathrm{OH})_{2}$
(D) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$

Sol. [D]
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \longrightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{CO}_{2}} \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$

Clear solution

44. The maximum number of electrons that can be filled in the shell with the principal quantum number $n=3$ is
[2017]
(A) 18
(B) 9
(C) 8
(D) 2

Sol. [A]

3s, 3p \& 3d contains total 18 electrons.
45. The atomic radii of $\mathrm{Li}, \mathrm{F}, \mathrm{Na}$ and Si follow the order.
(A) $\mathrm{Si}>\mathrm{Li}>\mathrm{Na}>\mathrm{F}$
(B) $\mathrm{Li}>\mathrm{F}>\mathrm{Si}>\mathrm{Na}$
(C) $\mathrm{Na}>\mathrm{Si}>\mathrm{F}>\mathrm{Li}$
(D) $\mathrm{Na}>\mathrm{Li}>\mathrm{Si}>\mathrm{F}$

Sol. [D]
Factual

Section 4 - Part A - Biology

46. The major excretory product of birds is
[2017]
(A) urea
(B) uric acid
(C) nitrates
(D) ammonia

Sol. [B]

For water conservation
47. Codon degeneracy means that
[2017]
(A) several of the amino acids are coded by more than one codon
(B) one codon can code for many amino acids
(C) one amino acid can be coded by only one codon
(D) The codons are triplet nucleotide sequences

Sol. [A]

Wobbling phenomenon degreneracy occurs at 3rd base of codon
48. In cell cyle, during interphase,
[2017]
(A) two daughter cells are produced
(B) the nucleus is divided into two daughter nuclei
(C) the chromosome condenses
(D) the DNA is replicated

Sol. [D]
DNA replicates in S-phase of interphase
49. Transfer of genetic material between populations is best defined as
[2017]
(A) gene flow
(B) genetic drift
(C) genetic shift
(D) speciation

Sol. [A]
Definition of gene flow - transfer of gene or allele from one population to another
50. Which ONE of the following statements is CORRECT about the tobacco mosaic virus ?
(A) It affects all monocotyledonous plants
(B) It affects photosynthetic tissue of the infected plant
(C) It does not infect other species beloging to the Solanaceae
(D) It infects gymnosperms

Sol. [B]
Fact based
51. Which ONE of the following statements is CORRECT about placenta ?
(A) Placenta is permeable to all bacteria
(B) Oxygen and carbon dioxide cannot diffuse through the placenta
(C) Waste products diffuse out of placenta into maternal blood
(D) Placenta does not secrete chorionic gonadotropins

Sol. [C]
Because it is permeable for ammonia and other Nitrogenous wastes.
52. The respiratory quotient of the reaction given below is
[2017] $2\left(\mathrm{C}_{5} \mathrm{H}_{88}\right)_{6}+145 \mathrm{O} \underset{2}{\longrightarrow} 102 \mathrm{CO}$ 古 $90 \mathrm{H} \mathrm{Q}+$ energy
(A) 0.703
(B) 0.725
(C) 0.960
(D) 1.422

Sol. [A]
$\mathrm{RQ}=\frac{\mathrm{CO}_{2}}{\mathrm{O}_{2}}=\frac{102}{145}=0.703$
53. Which ONE of the following statements is INCORRECT about nucleosomes?
(A) They contain DNA
(B) They containhistones
(C) They aremembrane-bound organelle
(D) They are a part of chromosomes

Sol. [C]
Nucleosome - DNA wrapped around histone during DNA packaging
54. The immediate precursor of thyroxine is
[2017]
(A) tyrosine
(B) tryptophan
(C) pyridoxine
(D) thymidine

Sol. [A]
Tyrosine with lodine form thyroxine.
55. The maximum number of oxygen molecules that can bind to one molecule of hemoglobin is
[2017]
(A) 8
(B) 6
(C) 4
(D) 2

Sol. [C]
Due to presence of four hememolecule.
56. Which ONE of the following biomolecules is synthesized in smooth endoplasmic reticulum ?
[2017]
(A) Proteins
(B) Lipids
(C) Carbohydrates
(D) Nucleotides

Sol. [B]
SER functions for lipid synthesis
57. The products of light reaction during photosynthesis include
[2017]
(A)ATP and NADPH
(B) O_{2} and NADP^{+}
(C) O_{2} and $\mathrm{H}_{2} \mathrm{O}$
(D) NADP^{+}and $\mathrm{H}_{2} \mathrm{O}$

Sol. [A]
ATP \& NADPH is assimilatory power produced in light reaction i.e. used in dark reaction.
58. Hypothalamus directly controls the production of which of the following hormones ?
[2017]
(A) glucocorticoidand insulin
(B) insulin andglucagon
(C) atrial natriuretic factor and gastrin
(D) glucocorticoids and androgens

Sol. [D]
By ACTH-RH which act on adenohypophysis for release of ACTH, ACTH than stimulate adrenal cortex for production of glucocorticoids and androgens
59. Which ONE of the following drugs is NOT obtained from fungal or plant sources ?
[2017]
(A) Penicillin
(B) Reserpine
(C) Acetaminophen
(D) Quinine

Sol. [C]

Acetaminophen is paracetamol not produced by plant or fungi, it is artificially formed
60. Jean-Baptiste Lamarck explained evolution based on
[2017]
(A) natural selection
(B) survival of the fittest
(C) mutations
(D) inheritance of acquired characteristics

Sol. [D]

Inheritance of acquired character.

Section 5- Part B- Mathematics

61. Let S be the circle in $x y$-plane which touches the x-axis at point A, the y-axis at point B and the unit circle $x^{2}+y^{2}=1$ at point C externally. If O denotes the origin, then the angle OCA equals
[2017]
(A) $\frac{5 \pi}{8}$
(B) $\frac{\pi}{2}$
(C) $\frac{3 \pi}{4}$
(D) $\frac{3 \pi}{5}$

Sol. [A]

\therefore Slope of $\mathrm{OM}=1$
$\therefore \angle C O A=45^{\circ}$
$C\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
Now OM = OC + CM
$\sqrt{2} h=1+h$
Squaring
$2 h^{2}=h^{2}+1+2 h$
$h^{2}-2 h-1=0$
$h=\frac{2 \pm 8}{2} \Rightarrow h=1 \pm \sqrt{2}$
$\mathrm{A}(1+2,0)$
Slope of $A C=\frac{0-\frac{1}{\sqrt{z}}}{1+\sqrt{2}-\frac{1}{\sqrt{2}}}=-\frac{1}{\sqrt{2}+1}=-(\sqrt{2}-1)$
$=-\tan \frac{22^{1}}{}{ }^{\circ}=\tan \left(180-\frac{22}{2}\right)^{\circ}=\tan 15 \frac{7}{2}^{1} \circ$
$\therefore \angle \mathrm{CAX}=157 \frac{1}{2}$ 。
$\therefore \angle \mathrm{OCA}=157 \frac{1}{2} \circ-45^{\circ}=112 \frac{1}{2} \circ=\frac{5 \pi}{8}$
62. In an isosceles trapezium, the length of one of the parallel sides, and the lengths of the non-parallel sides are all equal to 30 . In order to maximize the area of the trapezium, the smallest angle should be
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$

Sol. [C]

In $\triangle \mathrm{ABF}, \mathrm{y}=30 \cos \theta$
Area is $A=\frac{1}{2}[60+60 \cos \theta](30 \sin \theta)$

$$
\begin{aligned}
& =30(1+\cos \theta)(30 \sin \theta) \\
& =900(\sin \theta+\sin \theta \cos \theta)
\end{aligned}
$$

For maximum or minimum
$\frac{d A}{d \theta}=900\left[\cos \theta+\left(-\sin ^{2} \theta+\cos ^{2} \theta\right)\right]=0$
$\cos \theta-1+\cos ^{2} \theta+\cos ^{2} \theta=0$
$2 \cos ^{2} \theta+\cos \theta-1=0$
$(2 \cos \theta-1)(\cos \theta+1)=0$
$\cos \theta=\frac{1}{2}$ or $\cos \theta=-1$ (not possible)
$\theta=60^{\circ}$
63. Let A_{1}, A_{2}, A_{3} be regions in the $x y$-plane defined by
$A_{1}=\left\{(x, y): x^{2}+2 y^{2} \leq 1\right\}$,
$A_{2}=\left\{(x, y):|x|^{3}+2 \sqrt{2}|y|^{3} \leq 1\right\}$,
$A_{3}=\{(x, y): \max (|x|, \sqrt{2}|y|) \leq 1$. Then
[2017]
(A) $A_{1} \supset A_{2} \supset A_{3}$
(B) $A_{3} \supset A_{1} \supset A_{2}$
(C) $A_{2} \supset A_{3} \supset A_{2}$
(D) $A_{3} \supset A_{2} \supset A_{1}$

Sol. [D]

Draw Figure

$\operatorname{Max}(|x|+\sqrt{2}|y|)=1$
64. Let $A B C D$ be a square and E be a point outside $A B C D$ such that E, A, C are collinear in that order. Suppose $E B=E D=\sqrt{130}$ and the areas of triangle $E A B$ and square $A B C D$ are equal. Then the area of square $A B C D$ is
[2017]
(A) 8
(B) 10
(C) $\sqrt{120}$
(D) $\sqrt{125}$

Sol. [B]

given : ar $\triangle \mathrm{EAB}=$ ar square ABCD
$E B=E D=\sqrt{130}$
Let side of square $=x$
$B M=\frac{x}{\sqrt{2}}=A M$
$\operatorname{ar} \Delta \mathrm{EAB}=\operatorname{ar} \Delta E M B-\operatorname{ar} \Delta \mathrm{ABM}$
$=\frac{1}{2} \mathrm{EM} \times \mathrm{BM}-{ }_{\frac{1}{2}} \mathrm{AM} \cdot \mathrm{BM}$
$=\frac{1}{2}\left(\sqrt{\left.130-\frac{x^{2}}{2}\right) x} \begin{array}{ll}2\left(\frac{x}{\sqrt{2}}\right. & \frac{1}{2}\left(\frac{1}{2}\right)\end{array}\right.$
Area of square $=x^{2}$
Using (i)
$\frac{1}{2} \frac{x}{\sqrt{2}} \sqrt{130-\frac{x^{2}}{2}}-\frac{1}{2} \frac{x^{2}}{2}=x^{2}$
$\frac{x}{2 \sqrt{2}} \sqrt{130-\frac{x^{2}}{2}}=\frac{5 x^{2}}{4}$
solve $\mathrm{x}=\sqrt{10}$
$\therefore \mathrm{x}^{2}=10$
65. Consider the set $A=\{1,2,3, \ldots, 30\}$. The number of ways in which one can choose three distinct numbers from A so that the product of the chosen numbers is divisible by 9 is
[2017]
(A) 1590
(B) 1505
(C) 1110
(D) 1025

Section 6 - Part B-Physics

66. Two different liquids of same mass are kept in two identical vessels, which are placed in a freezer that extracts heat from them at the same rate causing each liquid to transform into a solid. The schematic figure below shows the temperature T vs time t plot for the two materials. We denote the specific heat in the liquid status to be $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$ for materials 1 and 2 respectively, and latent heats of fusion U_{1} and U_{2} respectively.
[2017]

Choose the correct option.
(B) $\mathrm{C}_{\mathrm{L}_{1}}>\mathrm{C}_{\mathrm{L}_{2}}$ and $\mathrm{U}_{1}>\mathrm{U}_{2}$
(A) $\mathrm{C}_{\mathrm{L}_{1}}>\mathrm{C}_{\mathrm{L}_{2}}$ and $\mathrm{U}_{1}<\mathrm{U}_{2}$
(D) $\mathrm{C}_{\mathrm{L} 1}<\mathrm{C}_{\mathrm{L} 2}$ and $\mathrm{U}_{1}<\mathrm{U}_{2}^{2}$

Sol. [C]
Let Refrigerater extract Qjoul/per second
Q.t $\Rightarrow m s\left(T_{f}-T\right)$

Higher the specific heat, Higher the slope
67. A long horizontal mirror is next to a vertical screen (See figure). Parallel light rays are falling on the mirror at an angle α from the vertical. If a vertical object of height h is kept on the mirror at a distance $d>h \tan (\alpha)$. The length of the shadow of the object on the screen would be

(A) $h / 2$
(B) $h \tan (\alpha)$
(C) 2 h
(D) 4 h

Sol. [C]

68. A spherical marble of radius 1 cm is stuck in a circular hole of radius slightly smaller than its own radius (for calculation purpose, both can be taken same) at the bottom of a bucket of height 40 cm and filled with water up to 10 cm . If the mass of the marble is 20 g , the net force on the marble due to water is close to
[2017]
(A) 0.02 N upward
(B) 0.02 N downward
(C) 0.04 N upward
(D) 0.04 N downward

Sol. [D]

$$
\mathrm{F}_{\text {net }}=\text { weight of water over it }
$$

$=(\rho g h) A-\left(\begin{array}{l}2 \\ 3\end{array} \pi \mathrm{R}^{3}\right) \rho \mathrm{\rho g}$
$=\mathrm{A}\left(10^{3} \times 10 \times 10 \times 10^{-2}\right)-\frac{3}{3} \times 10^{-2} \times 10^{3} \times 10$
Area $=0.04 \mathrm{~N}$ dowanward
69. In the circuit shown below (on the left) the resistance and the emf source are both variable. The graph of seven readings of the voltmeter and the ammeter (V and I , respectively) for different setting of resistance and the emf, taken at equal intervals of time Δt, are shown (on the right) by the dots connected by the curve EFGH. Consider the interval resistance of the battery to be negligible and the voltmeter and ammeter to be ideal devices. Take $\mathrm{R}_{0} \equiv \mathrm{~V} / \mathrm{I}$.
[2017]

Then the plot of the resistance as a function of time corresponding to the curve EFGH is given by
(A)

(B)

(C)

(D)

Sol. [D]
From E \rightarrow F
Slope is constant
V = IR
Thus R must be constant
$\mathrm{R}_{0}=\mathrm{V}_{0} / \mathrm{I}_{0}$
From $F \rightarrow G$
V = constant
I is increase thus R must be decrease.
at $G, R=\frac{V_{0}}{2 I_{0}}=\frac{R_{0}}{2}$
From $\mathbf{G} \square \mathbf{H}$
I = constant
$\mathrm{V}=$ increase, thus R must be increase

$$
\mathrm{R}_{\mathrm{H}}=\frac{2 \mathrm{~V}_{0}}{2 \mathrm{I}_{0}}=\mathrm{R}_{0}
$$

70. Stoke's law states that the viscous drag force F experienced by a sphere of radius a , moving with a speed V through a fluid with coefficient of viscosity η, is given by $F=6 \pi n a v$. If this fluid is flowing through a cylindrical pipe of radius r, length / and a pressure difference of P across its two ends, then the volume of water V which flows through the pipe in time t can be written as $\frac{V}{t}=k\left(\frac{P}{(\ell)}\right)^{a} \eta^{b} r^{c}$, where k is a dimensional constant.

Correct values of a, b and c are
[2017]
(A) $a=1, b=-1, c=4$
(B) $a=-1, b=1, c=4$
(C) $a=2, b=-1, c=3$
(D) $a=1, b=-2, c=-4$

Sol. [A]

$\frac{\mathrm{V}}{\mathrm{t}}=\mathrm{k}\left(\frac{\mathrm{P}}{\bar{\ell}}\right)^{\mathrm{a}} \cdot \eta^{\mathrm{b}} \cdot \gamma^{\mathrm{c}}$
$[\mathrm{r}]=\mathrm{L} ;[\mathrm{l}]=\mathrm{L}$
$[P]=\mathrm{ML}^{-1} \mathrm{~T}^{-2} ;[\eta]=\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
$[\mathrm{V}]=\mathrm{L}^{3}$
$[\mathrm{t}]=\mathrm{T}$
By calculation
$a=1 ; b=-1 ; c=4$

Section 7 - Part B- Chemistry

71. The reaction of an alkene X with bromine produce a compound Y , which has $22.22 \% \mathrm{C}, 3.71 \% \mathrm{H}$ and 74.07% Br . The ozonolysis of alkene X gives only one product. The alkene X is :
[Given : atomic mass of $\mathrm{c}=12 ; \mathrm{H}=1 ; \mathrm{Br}=80$]
[2017]
(A) ethylene
(B) 1-butene
(C) 2-butene
(D) 3-hexene

Sol. [C]
From the data given,
X will be $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{Ch}_{3}$ which on ozonolysis gives ethanal.
72. In the following reaction $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H} \underset{\mathrm{H}_{3} \mathrm{O}^{+}}{\stackrel{\mathrm{Hg}^{2+}}{\longrightarrow}} X \xrightarrow[\text { PhCHO }]{\text { dil. } \mathrm{NaOH}} \mathrm{Y} ; \mathrm{X}$ and Y , respectively, are
(A) $\mathrm{X}=\mathrm{H}_{3} \mathrm{C} \mathrm{CHO} \mathrm{Y}=$

(B)

(C) $\mathrm{X}=\mathrm{H}_{3} \mathrm{CCH}_{3}$

(D) $\mathrm{X}=\mathrm{H}_{3} \mathrm{C} \mathrm{CHO} \mathrm{Y}=$

Sol. [B]

73. KMnO_{4} reacts with $\mathrm{H}_{2} \mathrm{O}_{2}$ in an acidic medium. The number of moles of oxygen produced per mole of KMnO_{4} is
[2017]
(A) 2.5
(B) 5
(C) 1.25
(D) 2

Sol. [A]
(no. of eq. $)_{\mathrm{KMnO}}^{4}$ $=(\text { no. of eq. })_{\mathrm{H}_{2}}$
$1 \times 5=x \times 2$
$\square \quad \mathrm{x}=2.5$
74. The photoelectric behaviour of $\mathrm{K}, \mathrm{Li}, \mathrm{Mg}$ and Ag metals is shown in the plot below. If light of wavelength 400 nm is incident on each of these metals, which of them will emit photoelectrons?
[2017]

(A) K
(B) K and Li
(C) K , Li and Mg
(D) $\mathrm{K}, \mathrm{Li}, \mathrm{Mg}$ and Ag

Sol. [B]
If energy of incident light \geq work function light
Then photoelectrons will be ejected.
75. A piece of metal weighing 100 g is heated to $80^{\circ} \mathrm{C}$ and dropped into 1 kg of cold water in an insulated container at $15^{\circ} \mathrm{C}$. If the final temperature of the water in the container is $15.69{ }^{\circ} \mathrm{C}$. If the final temperature of the water in the container is $15.69{ }^{\circ} \mathrm{C}$, the specific heat of the metal in $\mathrm{J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$ is
[2017]
(A) 0.38
(B) 0.24
(C) 0.45
(D) 0.13

Sol. [C]
$Q=m S \Delta T$
Use the formula \& get the answer

Section 8 Part-B Biology

76. The nucleus of a diploid organism contains 3 ng of DNA in G_{1} phase. Which ONE of the following statements describes the state of the cell at the end of Sphase ?
[2017]
(A) The nucleus divides into two, and each nucleus contains 3 ng of DNA
(B) The nucleus does not divide, and it contains 3 ng of DNA
(C) The nucleus divides into two, and each nucleus contains 1.5 ng of DNA
(D)The nucleus does not divide and it contains 6 ng of DNA

Sol. [D]

In S-phase DNA replication occurs
77. Three cellular processes are listed below. Choose the Correct combination of processes that involve proton gradient across the membrane.
(i) Photosynthesis
(ii) Aerobic respiration
(iii) Anaerobic respiration
(A) ii and iii
(B) i and ii
(C) i, ii and iii
(D) i andiii
[2017]

Sol. [B]

In photosynthesis - photophosphorylation \& in aerobic respiration - oxidative phosphorylation occurs that requires proton gradient.
78. The concentration of OH^{-}ions in a solution with the H^{+}ions concentration of $1.3 \times 10^{-4} \mathrm{M}$ is
[2017]
(A) $7.7 \times 10^{-4} \mathrm{M}$
(B) $1.3 \times 10^{-4} \mathrm{M}$
(C) $2.6 \times 10^{-8} \mathrm{M}$
(D) $7.7 \times 10^{-11} \mathrm{M}$

Sol. [D]

$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$
$1.3 \times 10^{-4} \times[\mathrm{OH}]=10^{-14}$

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =\frac{1}{1.3} \times 10^{-10} \\
& =0.769 \times 10^{-10} \\
& =7.7 \times 10^{-11}
\end{aligned}
$$

79. Given that tidal volume is 600 ml , inspiratory reserve volume is 2500 ml , and expiratory reserve volume is 800 ml , what is the value of vital capacity of lung ?
(A) 3900 ml
(B) 3300 ml
(C) 3100 ml
(D) 1400 ml

Sol. [A]
$V C=T V+I R V+E R V$
Forcefully inspiration after forcefully expiration
80. Which of the following organisms produce sperm without involving meiosis?
[2017]
(A) Sand fly and fruit fly
(B) House fly and grasshopper
(C) Honeybee and ant
(D) Zebra fish and frog

Sol. [C]

Because they are haploid organism.

